Further Generalization of Taylor Formula and Application

Zheng Xiaming
Institute of Physical Science and Information Technology, Anhui University, Anhui, 230039, China
Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, China

Keywords: Taylor formula; Tensor; Polynomial; Higher-order derivative; Tensor-valued function

Abstract

Taylor formula is extensively useful in several fields, such as mathematics, science and technology etc. Because of the wide range of application of Taylor formula, its significance is generally identified. However, Taylor formula is still restricted in vector. In this paper, the domain of Taylor formula is generalized and then range is also generalized. Finally, some specific examples in physics are given.

1. Expansion of the Taylor formula

In general, the Taylor formula for a single-variable function $f(x)$ that is defined in the neighborhood of point x_{0} and n times differentiable at x_{0} is expressed as

$$
\begin{equation*}
f(x)=\sum_{k=0}^{n} \frac{f^{(k)}\left(x_{0}\right)}{k!}\left(x-x_{0}\right)^{k}+R_{n+1} \tag{1}
\end{equation*}
$$

$f^{(k)}\left(x_{0}\right)$ is the function value of the k-th derivative of $f(x)$ at $x_{0} . R_{n+1}$ is the remainder of the Taylor formula (The domain and value range of the function discussed in this article only consider real numbers.).

In the multivariate function

$$
\begin{equation*}
f(\overrightarrow{\boldsymbol{x}})=f\left(x_{1}, x_{2} \ldots x_{m}\right)=\sum_{k=0}^{n} \frac{1}{k!}\left(\Delta x_{1} \frac{\partial}{\partial x_{1}}+\ldots+\Delta x_{m} \frac{\partial}{\partial x_{m}}\right)^{k} f\left(x_{01}, x_{02} \ldots x_{0 m}\right)+R_{n+1} \tag{2}
\end{equation*}
$$

$\Delta x_{i}=x_{i}-x_{0 i} . f\left(x_{01}, x_{02} \ldots x_{0 m}\right)$ is the value of n times partial differentiable function $f\left(x_{1}, x_{2} \ldots x_{m}\right)$ at $x_{01}, x_{02} \ldots x_{0 m}$.
As we all know, the general form of a multivariate polynomial is $\sum_{j_{1} j_{2} \ldots j_{m}} a_{j_{1} j_{2} \ldots j_{m}} X_{1}^{j_{1}} X_{2}^{j_{2}} \ldots X_{m}^{j_{m}}$, $x_{1}, x_{2} \ldots x_{m}$ are m indeterminates, $j_{1}, j_{2} \ldots j_{m}$ is the degree of each indeterminate, $j_{1}+j_{2}+\ldots j_{m}$ is the degree of the monomial, and $a_{j_{i} j_{2} \ldots j_{m}}$ is the coefficient of monomial when the degree of x_{1} is j_{i}, the degree of x_{2} is $j_{2} \ldots$ and the degree of x_{m} is j_{m}. Its tensor representation is

$$
\mathrm{P}[\overrightarrow{\boldsymbol{x}}]=A_{0}+\overrightarrow{\boldsymbol{A}_{1}} \cdot \overrightarrow{\boldsymbol{x}}+\overleftrightarrow{\boldsymbol{A}_{2}}:(\overrightarrow{\boldsymbol{x}} \otimes \overrightarrow{\boldsymbol{x}})+\overleftrightarrow{\boldsymbol{A}_{3}} \vdots(\overrightarrow{\boldsymbol{x}} \otimes \overrightarrow{\boldsymbol{x}} \otimes \overrightarrow{\boldsymbol{x}})+\ldots+{\overleftrightarrow{\boldsymbol{A}_{n}^{(n)}} \cdot \cdot^{(n)} \overrightarrow{\boldsymbol{x}}^{\otimes n} . \quad A_{0} \text { is a } 0^{\text {th }} \text { order tensor, }}_{\text {, }}
$$ i.e. a constant, $\overrightarrow{\boldsymbol{A}_{1}}$ is an m-dimensional vector, $\overleftrightarrow{\boldsymbol{A}_{2}}$ is an $2^{\text {nd }}$ order symmetric matrix, and $\overrightarrow{A_{n}}$ is an n-th order square tensor (i.e. the positive integer set of each index is the same); $\overrightarrow{\boldsymbol{x}}=\left(x_{1}, x_{2}, \ldots, x_{m}\right)^{T}$ is the vector of the respective variables, \otimes denotes the tensor product, $\overrightarrow{\boldsymbol{x}}^{\otimes n}=\overrightarrow{\boldsymbol{x}} \otimes \overrightarrow{\boldsymbol{x}} \otimes\left(\mathrm{n}\right.$ times multiplication...) $\otimes \overrightarrow{\boldsymbol{x}}$, and ${ }^{.(n)}$ means n times dot product. ${ }^{[3]}$

Combining the ideas of the tensor representation of the above polynomial, we point out:
Theorem 1: The tensor representation of the multivariate Taylor formula is:

$$
\begin{equation*}
f(\overrightarrow{\boldsymbol{x}})=\sum_{k=0}^{n} \frac{1}{k!} \nabla^{\otimes k} f\left(\overrightarrow{\boldsymbol{x}_{0}}\right)^{(k)}\left(\overrightarrow{\boldsymbol{x}}-\overrightarrow{\boldsymbol{x}_{0}}\right)^{\otimes k}+R_{n+1} \tag{3}
\end{equation*}
$$

and is equivalent to (2).
Proof: When $\mathrm{n}=0$, it is clearly established. When $\mathrm{n}=1$,

$$
\begin{aligned}
& f(\overrightarrow{\boldsymbol{X}})=f\left(\overrightarrow{x_{0}}\right)+\left.\nabla f(\overrightarrow{\boldsymbol{x}})\right|_{\vec{x}=\bar{x}_{0}} \cdot\left(\overrightarrow{\boldsymbol{X}}-\overrightarrow{\boldsymbol{x}_{0}}\right)+R_{2} \\
& =f\left(x_{01}, x_{02} \ldots x_{0 m}\right)+\left(f_{\left(x_{01}\right)}^{\prime}, f_{\left(x_{02}\right)}^{\prime}, \ldots, f_{\left(x_{0 \mathrm{~m}}\right)}^{\prime}\right) \cdot\left(x_{1}-x_{01}, x_{2}-x_{02}, \ldots, x_{m}-x_{0 m}\right)+R_{2} \\
& =f\left(x_{01}, x_{02} \ldots x_{0 m}\right)+f_{\left(x_{01}\right)}^{\prime}\left(x_{1}-x_{01}\right)+\ldots+f_{\left(x_{0 \mathrm{~m}}\right)}^{\prime}\left(x_{m}-x_{0 m}\right)+R_{2}
\end{aligned}
$$

In the traditional Taylor formula representation

$$
\begin{aligned}
& f\left(x_{1}, x_{2} \ldots x_{m}\right)=f\left(x_{01}, x_{02} \ldots x_{0 m}\right)+\left(\Delta x_{1} \frac{\partial}{\partial x_{1}}+\ldots+\Delta x_{m} \frac{\partial}{\partial x_{m}}\right) f\left(x_{01}, x_{02} \ldots x_{0 m}\right)+R_{2} \\
& =f_{\left(x_{01}\right)}^{\prime}\left(x_{1}-x_{01}\right)+\ldots+f_{\left(x_{0 \mathrm{~m}}\right)}^{\prime}\left(x_{m}-x_{0 m}\right)+R_{2}, \text { equal to each other. }
\end{aligned}
$$

Then for the general case n, you only need to consider the n-th item. The n-th item of the tensor notation is $\frac{1}{n!} \nabla^{\otimes n} f\left(\overrightarrow{\boldsymbol{x}_{0}}\right)^{(n)}\left(\overrightarrow{\boldsymbol{x}}-\overrightarrow{\boldsymbol{x}_{0}}\right)^{\otimes n}$, we write it in component form (index form):

$$
\begin{aligned}
& \frac{1}{n!} \frac{\partial}{\partial x_{i_{1}}} \frac{\partial}{\partial x_{i_{2}}} \ldots \frac{\partial}{\partial x_{i_{n}}} f \Delta x_{i_{1}} \Delta x_{i_{2}} \ldots \Delta x_{i_{n}}=\frac{1}{n!}\left(\Delta x_{1} \frac{\partial}{\partial x_{1}}+\ldots+\Delta x_{m} \frac{\partial}{\partial x_{m}}\right) \frac{\partial}{\partial x_{i_{2}}} \ldots \frac{\partial}{\partial x_{i_{n}}} f \Delta x_{i_{2}} \ldots \Delta x_{i_{n}} \\
& =\frac{1}{n!}\left(\Delta x_{1} \frac{\partial}{\partial x_{1}}+\ldots+\Delta x_{m} \frac{\partial}{\partial x_{m}}\right)^{2} \frac{\partial}{\partial x_{i_{3}}} \ldots \frac{\partial}{\partial x_{i_{n}}} f \Delta x_{i_{3}} \ldots \Delta x_{i_{n}}=\frac{1}{n!}\left(\Delta x_{1} \frac{\partial}{\partial x_{1}}+\ldots+\Delta x_{m} \frac{\partial}{\partial x_{m}}\right)^{n} f\left(x_{01}, x_{02} \ldots x_{0 m}\right)
\end{aligned}
$$

, which is equal to the n-th term in traditional notation. The remainder R_{n+1} has nothing to do with the discussion above, so it is proved.

Note: The indices representation of (3) is

$$
\begin{equation*}
f\left(x_{i}\right)=\left.\sum_{k=0}^{n} \frac{1}{k!} \frac{\partial}{\partial x_{i_{1}}} \frac{\partial}{\partial x_{i_{2}}} \ldots \frac{\partial}{\partial x_{i_{k}}} f\right|_{x_{1}=x_{011, \ldots} x_{m}=x_{0 m}} \Delta x_{i_{1}} \Delta x_{i_{2}} \ldots \Delta x_{i_{k}}+R_{n+1} \tag{3'}
\end{equation*}
$$

In fact, from another perspective, the essence of the Taylor formula is to use the polynomial to simulate the properties of a function around a particular point, and because of the equivalence of the multivariate polynomial and the tensor, it is obvious that the tensor representation is reasonable.

2. Domain's generalization and high-order derivatives

For the definition of higher-order derivatives and differentiations of analogous single-variable functions, we can define the k-th derivative of the multivariate function $f(\overrightarrow{\boldsymbol{x}})$ at the constant vector $\overrightarrow{\boldsymbol{x}_{0}}$ as $f_{\left(\overrightarrow{x_{0}}\right)}^{(k)}=\nabla^{\otimes k} f\left(\overrightarrow{\boldsymbol{x}_{0}}\right)$, of course, its k-th derivative is $f_{(\vec{x})}^{(k)}=\nabla^{\otimes k} f(\overrightarrow{\boldsymbol{x}})$. Its first derivative is $f_{(\vec{x})}^{\prime}=\nabla f(\vec{x})$,which is the gradient we are familiar with. It is easy to get the differentiation of $f(\overrightarrow{\boldsymbol{x}})$, i.e. $\mathrm{d} f(\overrightarrow{\boldsymbol{x}})=\nabla f(\overrightarrow{\boldsymbol{x}}) \cdot \mathrm{d} \overrightarrow{\boldsymbol{x}}, \mathrm{d} \overrightarrow{\boldsymbol{x}}=\left(\mathrm{d} x_{1}, \mathrm{~d} x_{2}, \ldots, \mathrm{~d} x_{m}\right)^{T}$.

The above result can be generalized to a vector value function by a very simple step, that is, the function value is a vector, $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{p}, \overrightarrow{\boldsymbol{y}}=\vec{f}(\overrightarrow{\boldsymbol{x}})$. Obviously any component y_{j} of $\overrightarrow{\boldsymbol{y}}$ has a relationship with $y_{j}=f_{j}(\vec{x})$, then using the Taylor formula, we can get $y_{j}=\sum_{k=0}^{n} \frac{1}{k!} \nabla^{\otimes k} f_{j}\left(\overrightarrow{x_{0}}\right)^{(k)}\left(\overrightarrow{\boldsymbol{x}}-\overrightarrow{\boldsymbol{x}_{0}}\right)^{\otimes k}+R_{j, n+1}$. This can also be written in the form of a column vector:

$$
\begin{gather*}
\overrightarrow{\boldsymbol{y}}=\left(\begin{array}{c}
y_{i} \\
y_{2} \\
\vdots \\
y_{p}
\end{array}\right)=\sum_{k=0}^{n}\left(\begin{array}{c}
\frac{1}{k!} \nabla^{\otimes k} f_{1}\left(\overrightarrow{\boldsymbol{x}_{0}}\right)^{(k)}\left(\overrightarrow{\boldsymbol{x}}-\overrightarrow{\boldsymbol{x}_{0}}\right)^{\otimes k} \\
\frac{1}{k!} \nabla^{\otimes k} f_{2}\left(\overrightarrow{\boldsymbol{x}_{0}}\right)^{(k)}\left(\overrightarrow{\boldsymbol{x}}-\overrightarrow{\boldsymbol{x}_{0}}\right)^{\otimes k} \\
\vdots \\
\frac{1}{k!} \nabla^{\otimes k} f_{p}\left(\overrightarrow{\boldsymbol{x}_{0}}\right)^{\cdot(k)}\left(\overrightarrow{\boldsymbol{x}}-\overrightarrow{\boldsymbol{x}_{0}}\right)^{\otimes k}
\end{array}\right)+\overrightarrow{\boldsymbol{R}_{n+1}}=\sum_{k=0}^{n}\left(\begin{array}{c}
\frac{1}{k!} \nabla^{\otimes k} f_{1}\left(\overrightarrow{\boldsymbol{x}_{0}}\right) \\
\frac{1}{k!} \nabla^{\otimes k} f_{2}\left(\overrightarrow{\boldsymbol{x}_{0}}\right) \\
\vdots \\
\frac{1}{k!} \nabla^{\otimes k} f_{p}\left(\overrightarrow{\boldsymbol{x}_{0}}\right)
\end{array}\right) \cdot(\vec{k})\left(\overrightarrow{\boldsymbol{x}}-\overrightarrow{\boldsymbol{x}_{0}}\right)^{\otimes k}+\overrightarrow{\boldsymbol{R}_{n+1}} \\
=\left.\sum_{k=0}^{n} \frac{1}{k!} \nabla^{\otimes k} \vec{f}(\overrightarrow{\boldsymbol{x}})\right|_{\vec{x}=\overline{x_{0}}} \cdot{ }^{(k)}\left(\overrightarrow{\boldsymbol{x}}-\overrightarrow{\boldsymbol{x}_{0}}\right)^{\otimes k}+\overrightarrow{\boldsymbol{R}_{n+1}} \tag{4}
\end{gather*}
$$

Its indices representation is:

$$
\begin{equation*}
y_{j}=\sum_{k=0}^{n} \frac{1}{k!} \frac{\partial}{\partial x_{i_{1}}} \frac{\partial}{\partial x_{i_{2}}} \ldots \frac{\partial}{\partial x_{i_{k}}} f_{j}\left(x_{01}, x_{02} \ldots x_{0 m}\right) \Delta x_{i_{1}} \Delta x_{i_{2}} \ldots \Delta x_{i_{k}}+R_{j, n+1} \tag{4’}
\end{equation*}
$$

In order to get a more compact structure, let's observe its regulation. When $\mathrm{n}=0$, $\overrightarrow{\boldsymbol{y}}=\vec{f}\left(\overrightarrow{\boldsymbol{x}_{0}}\right)+\overrightarrow{\boldsymbol{R}_{1}}$.

When $\mathrm{n}=1$,

$$
\overrightarrow{\boldsymbol{y}}=\vec{f}\left(\overrightarrow{\boldsymbol{x}_{0}}\right)+\left(\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{m}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{p}} \\
\vdots & \vdots & \vdots & 0 \\
\frac{\partial f_{p}}{\partial x_{1}} & \cdots & \cdots & \frac{\partial f_{p}}{\partial x_{m}}
\end{array}\right)\left(\begin{array}{c}
x_{1}-x_{01} \\
x_{2}-x_{02} \\
\vdots \\
x_{m}-x_{0 m}
\end{array}\right)+\overrightarrow{\boldsymbol{R}_{2}} \quad \text {.Combine the above } \quad \text { ideas, }
$$

$$
\left(\begin{array}{cccc}
\frac{\partial f_{1}}{\partial x_{1}} & \frac{\partial f_{1}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{m}} \\
\frac{\partial f_{2}}{\partial x_{1}} & \frac{\partial f_{2}}{\partial x_{2}} & \cdots & \frac{\partial f_{1}}{\partial x_{p}} \\
\vdots & \vdots & \vdots & 0 \\
\frac{\partial f_{p}}{\partial x_{1}} & \cdots & \cdots & \frac{\partial f_{p}}{\partial x_{m}}
\end{array}\right)
$$

can be defined as the first derivative of a vector-valued function, which is
the Jacobian matrix. We can write it down as $\overleftrightarrow{\boldsymbol{D}_{f}}=\nabla \otimes \vec{f}(\overrightarrow{\boldsymbol{x}})$. Obviously, the k-th derivative of $\vec{f}(\overrightarrow{\boldsymbol{x}})$ is $\vec{f}_{(\overrightarrow{\mathbf{x}})}^{(k)}=\nabla^{\otimes k} \otimes \vec{f}(\overrightarrow{\boldsymbol{x}})$, and its differentiation is $\mathrm{d} \vec{f}(\overrightarrow{\boldsymbol{x}})=\overleftrightarrow{\boldsymbol{D}_{f}} \mathrm{~d} \overrightarrow{\boldsymbol{x}}$.

3. Further generalization

After the above discussion, we can try to further generalize the domain of the function to the tensor set, i.e. $f: R^{m^{n}} \rightarrow R, y=f\left(\overrightarrow{\boldsymbol{x}}^{(n)}\right)$. Here has been simplified, Set the argument $\ddot{\boldsymbol{x}}^{(n)}$ as a square tensor (the dimension of each index is equal, that is to say, the n indices of the component can only be taken from 1 to m). If it is a general tensor, it is more troublesome to discuss. Interested readers can try it for themselves.

Tensor $\ddot{\boldsymbol{x}}^{(n)}=x_{i_{i_{1}} \ldots . . \hat{e}_{n}} \hat{\boldsymbol{e}}_{i_{1}} \hat{\boldsymbol{e}}_{\boldsymbol{i}_{2}} \ldots \hat{\boldsymbol{e}}_{\boldsymbol{i}_{n}}$, representing linear combination of tensor basis $\hat{\boldsymbol{e}}_{\boldsymbol{i}_{1}} \hat{\boldsymbol{e}}_{i_{2}} \ldots \hat{\boldsymbol{e}}_{i_{n}}$ with
coefficient $x_{i_{1} 2 \ldots i_{n}}$. Define differential operator $\ddot{\boldsymbol{D}}^{(n)}=\frac{\partial}{\partial x_{i_{1}} x_{i_{2}} \ldots x_{i_{n}}} \hat{\boldsymbol{e}}_{i_{1}} \hat{\boldsymbol{e}}_{i_{2}} \ldots \hat{\boldsymbol{e}}_{i_{n}}$. For convenience, $\frac{\partial}{\partial x_{i i_{2} \ldots i_{n}}}$ is simply denoted as $\partial_{i_{1} i_{2} \ldots i_{n}}$.

The differential in general case is $\mathrm{d} f\left(\overrightarrow{\boldsymbol{x}}^{(n)}\right)=\overrightarrow{\boldsymbol{D}}^{(n)} f\left(\overrightarrow{\boldsymbol{x}}^{(n)}\right) \cdot{ }^{(n)} \mathrm{d} \overrightarrow{\boldsymbol{x}}^{(n)}=\left(\partial_{i_{i_{2}}, \ldots, i_{n}} f\right) d x_{i_{1}, \ldots . i_{n}}$, and the k-th derivative is naturally $f_{\left(\dot{\boldsymbol{x}}^{(n)}\right)}^{(k)}=\overrightarrow{\boldsymbol{D}}^{(n) \otimes k} f\left(\overrightarrow{\boldsymbol{x}}^{(n)}\right)$.

Therefore, a function $f\left(\overrightarrow{\boldsymbol{x}}^{(n)}\right)$ that is s times differentiable for any $x_{i_{i}, \ldots i_{n}}$ has a corresponding Taylor's formula

$$
\begin{equation*}
f\left(\overrightarrow{\boldsymbol{X}}^{(n)}\right)=\sum_{k=0}^{s} \frac{1}{k!} \overrightarrow{\boldsymbol{D}}^{(n) \otimes(k)} \otimes f\left(\breve{\boldsymbol{X}}_{0}^{(n)}\right) \cdot(n k)\left(\overrightarrow{\boldsymbol{X}}^{(n)}-\widetilde{\boldsymbol{X}}_{0}^{(n)}\right)^{\otimes k}+\overline{\boldsymbol{R}_{s+1}} \tag{5}
\end{equation*}
$$

If you want to write a component representation and find that the indices are not enough. We can replace it with a combination of Roman numerals, uppercase letters and positive integers:

$$
\begin{equation*}
f\left(x_{i i_{2} \ldots i_{n}}\right)=\sum_{k=0}^{s} \frac{1}{k!} \partial_{\mathrm{I}_{1} 2_{2} \ldots \mathrm{I}_{n}} \partial_{\mathrm{I}_{1} \mathrm{II}_{2} \ldots \mathrm{II}_{n}} \ldots \partial_{\mathrm{K}_{1} \mathrm{~K}_{2} \ldots \mathrm{~K}_{\mathrm{n}}} f\left(x_{0, i_{1} \ldots \ldots i_{n}}\right) \Delta x_{\mathrm{I}_{1} 2 \ldots \mathrm{I}_{n}} \Delta x_{\mathrm{II}_{1} \mathbb{I}_{2} \ldots \mathrm{II}_{n}} \ldots \Delta x_{\mathrm{K}_{1} \mathrm{~K}_{2} \ldots \mathrm{~K}_{\mathrm{n}}}+R_{s+1, i_{2} \ldots i_{n}} \tag{5’}
\end{equation*}
$$

This is the Taylor formula of an arbitrary function of tensor.
Using the previously method of generalizing range, it is possible to generalize the function value to a tensor to obtain the most general case. $f: \mathbb{R}^{m^{n}} \rightarrow \mathbb{R}^{p^{q}}, \ddot{\boldsymbol{y}}^{(q)}=\vec{f}^{(q)}\left(\overrightarrow{\boldsymbol{x}}^{(n)}\right)$, the meaning is that the element in the definition domain is an n-th order tensor with each index from 1 to m . The elements in the range are q-th order tensors with each index from 1 to p.

Through analogical reasoning, we can see that the first derivative is $\overrightarrow{\boldsymbol{D}}^{(n)} \otimes \overrightarrow{\boldsymbol{f}}^{(q)}\left(\overrightarrow{\boldsymbol{x}}^{(n)}\right)$, the differentiation is $\mathrm{d} \overrightarrow{\boldsymbol{f}}^{(q)}=\left(\overrightarrow{\boldsymbol{D}}^{(n)} \otimes \vec{f}^{(q)}\right) \cdot{ }^{(n)} \boldsymbol{d} \ddot{\boldsymbol{X}}^{(n)} \quad$, and the k-th derivative is naturally $\vec{f}^{(q)[k]}\left(\ddot{\boldsymbol{x}}^{(n)}\right)=\overrightarrow{\boldsymbol{D}}^{(n) \otimes(k)} \otimes \vec{f}^{(q)}$.

So immediately write the Taylor formula of the tensor value function:

$$
\begin{equation*}
\overrightarrow{\boldsymbol{f}}^{(q)}=\sum_{k=0}^{s} \frac{1}{k!} \overrightarrow{\boldsymbol{D}}^{(n) \otimes(k)} \otimes \ddot{\boldsymbol{f}}^{(q)}\left({\widetilde{\boldsymbol{x}_{0}}}^{(n)}\right) \cdot(n k)\left(\ddot{\boldsymbol{X}}^{(n)}-\widetilde{\boldsymbol{X}}_{0}^{(n)}\right)^{\otimes k}+\widetilde{\boldsymbol{R}_{s+1}} \tag{6}
\end{equation*}
$$

The indices representation:

$$
\begin{equation*}
f_{j_{1} j_{2} \ldots j_{q}}^{(q)}\left(x_{i_{1} 2 \ldots i_{n}}\right)=\sum_{k=0}^{s} \frac{1}{k!} \partial_{\mathrm{I}_{1} \mathrm{I}_{2} \ldots \mathrm{I}_{n}} \partial_{\mathrm{II}_{1} \mathrm{II}_{2} \ldots \mathrm{I}_{\mathrm{n}}} \ldots \partial_{\mathrm{K}_{1} \mathrm{~K}_{2} \ldots \mathrm{~K}_{\mathrm{n}}} f_{j_{1} j_{2} \ldots j_{q}}^{(q)}\left(x_{i_{1} i_{2} \ldots i_{n}}\right) \Delta x_{\mathrm{II}_{2} \ldots \mathrm{I}_{\mathrm{n}}} \Delta x_{\mathrm{II}_{1} \mathrm{I}_{2} \ldots \mathrm{II}_{\mathrm{n}}} \ldots \Delta x_{\mathrm{K}_{1} \mathrm{~K}_{2} \ldots \mathrm{~K}_{\mathrm{n}}} \tag{6’}
\end{equation*}
$$

4. Applications

Example 1: In a classical charged particles system, the electric potential φ of the system can be expressed as integral

$$
\begin{equation*}
\varphi(\overrightarrow{\boldsymbol{x}})=k \int_{V^{\prime}} \frac{\rho\left(\overrightarrow{\boldsymbol{x}}^{\prime}\right) d V^{\prime}}{\left|\overrightarrow{\boldsymbol{x}}-\overrightarrow{\boldsymbol{x}}^{\prime}\right|} \tag{7}
\end{equation*}
$$

In $\mathbb{R}^{3}, \overrightarrow{\boldsymbol{x}}$ is the field point coordinates, $\overrightarrow{\boldsymbol{x}}^{\prime}$ is the source point coordinates, where k is the electrostatic constant, and $\rho\left(\vec{x}^{\prime}\right)$ is a function of charge density with respect to the position of the source.

We use Taylor's formula to expand $f\left(\overrightarrow{\boldsymbol{x}}^{\prime}\right)=\frac{1}{\left|\overrightarrow{\boldsymbol{x}}-\overrightarrow{\boldsymbol{x}}^{\prime}\right|}$ at $\overrightarrow{\boldsymbol{x}}=\overrightarrow{0}$ to a power series of $\overrightarrow{\boldsymbol{x}}^{\prime}$.

$$
f(\overrightarrow{0})=\frac{1}{|\overrightarrow{\boldsymbol{x}}|} \quad, \quad f^{\prime}(\overrightarrow{0})=\left.\nabla \frac{1}{\left|\overrightarrow{\boldsymbol{x}}-\overrightarrow{\boldsymbol{x}}^{\prime}\right|}\right|_{\overrightarrow{\mathbf{x}}=\overrightarrow{0}}=-\frac{1}{\overrightarrow{\boldsymbol{x}}^{2}}=-\nabla \frac{1}{|\overrightarrow{\boldsymbol{x}}|} \quad, \quad f_{(\overrightarrow{0})}^{\prime \prime}=\left.\nabla \otimes \nabla \frac{1}{\left|\overrightarrow{\boldsymbol{x}}-\overrightarrow{\boldsymbol{x}}^{\prime}\right|}\right|_{\overrightarrow{\mathbf{x}}=\overrightarrow{0}}=\nabla \otimes \nabla \frac{1}{|\overrightarrow{\boldsymbol{x}}|} .
$$

Obviously,

$$
\begin{align*}
& f_{(\overrightarrow{(0)}}^{(n)}=\left.\nabla^{\otimes n} \frac{1}{\left|\overrightarrow{\boldsymbol{x}}-\overrightarrow{\boldsymbol{x}}^{\prime}\right|}\right|_{\overrightarrow{\mathbf{x}}=\mathbf{0}}=(-1)^{n} \nabla^{\otimes n} \frac{1}{|\overrightarrow{\boldsymbol{x}}|} \text {. Use (3) and then brings the result into (7), so: } \\
& \varphi(\overrightarrow{\boldsymbol{x}})=k \int_{V^{\prime}} \rho\left(\overrightarrow{\boldsymbol{x}}^{\prime}\right) \frac{1}{|\overrightarrow{\boldsymbol{x}}|} d V^{\prime}-k \int_{V^{\prime}} \rho\left(\overrightarrow{\boldsymbol{x}}^{\prime}\right) \nabla \frac{1}{|\overrightarrow{\boldsymbol{x}}|} \cdot \overrightarrow{\boldsymbol{x}}^{\prime} d V^{\prime}+\ldots+(-1)^{n} k \int_{V^{\prime}} \rho\left(\overrightarrow{\boldsymbol{x}}^{\prime}\right) \nabla^{\otimes n} \frac{1}{|\overrightarrow{\boldsymbol{x}}|} \cdot{ }^{(n)} \overrightarrow{\boldsymbol{x}}^{\otimes n} d V^{\prime}+\ldots \tag{8}
\end{align*}
$$

We call the n-th term of the electric potential of the electric 2^{n-1} moment. For example, the second term is the electric dipole moment potential and the third term is the electric quadrupole moment potential. With the same reason, the magnetic vector potential \vec{A} can also be expanded into the sum of the magnetic multipole moments.

Example 2: In fluid mechanics, the velocity $\overrightarrow{\boldsymbol{v}}$ about a specific point $\overrightarrow{\boldsymbol{r}}$ in $\mathbb{R}^{3}, \overrightarrow{\boldsymbol{v}}(\overrightarrow{\boldsymbol{r}})$ is called the velocity field in space, which is generally considered to be continuous. We can use the Taylor formula to analyze the properties of velocity in a neighborhood of any given point in the field. Using (4), get $\overrightarrow{\boldsymbol{v}}(\overrightarrow{\boldsymbol{r}}+\Delta \overrightarrow{\boldsymbol{r}})=\overrightarrow{\boldsymbol{v}}(\overrightarrow{\boldsymbol{r}})+\nabla \otimes \overrightarrow{\boldsymbol{v}} \cdot \Delta \overrightarrow{\boldsymbol{r}}+\overrightarrow{\boldsymbol{R}}_{2}$. Look at each item in order, where the first item $\overrightarrow{\boldsymbol{v}}(\overrightarrow{\boldsymbol{r}})$ represents the translation of the fluid. As for the second item, obviously it is a 3×3 matrix, we may wish to write it as a symmetric matrix and an antisymmetric matrix $\operatorname{sum} \nabla \otimes \overrightarrow{\boldsymbol{v}}=\frac{1}{2}\left[\nabla \otimes \overrightarrow{\boldsymbol{v}}+(\nabla \otimes \overrightarrow{\boldsymbol{v}})^{T}\right]+\frac{1}{2}\left[\nabla \otimes \overrightarrow{\boldsymbol{v}}-(\nabla \otimes \overrightarrow{\boldsymbol{v}})^{T}\right]$, define $\overrightarrow{\boldsymbol{\varepsilon}}^{(2)}=\frac{1}{2}\left[\nabla \otimes \overrightarrow{\boldsymbol{v}}+(\nabla \otimes \overrightarrow{\boldsymbol{v}})^{T}\right]$ as the strain rate matrix (tensor). And the antisymmetric term, there existence relationship $\frac{1}{2} \boldsymbol{\Delta} \overrightarrow{\boldsymbol{r}} \cdot\left[\nabla \otimes \overrightarrow{\boldsymbol{v}}-(\nabla \otimes \overrightarrow{\boldsymbol{v}})^{T}\right]=\frac{1}{2} \nabla \times \overrightarrow{\boldsymbol{v}} \times \Delta \overrightarrow{\boldsymbol{r}}$, is the rotation rate. Therefore, we have

$$
\begin{equation*}
\overrightarrow{\boldsymbol{v}}(\overrightarrow{\boldsymbol{r}}+\Delta \overrightarrow{\boldsymbol{r}})=\overrightarrow{\boldsymbol{v}}(\overrightarrow{\boldsymbol{r}})+\overrightarrow{\boldsymbol{\varepsilon}}^{(2)} \cdot \Delta \overrightarrow{\boldsymbol{r}}+\frac{1}{2} \nabla \times \overrightarrow{\boldsymbol{v}} \times \Delta \overrightarrow{\boldsymbol{r}}+\overrightarrow{\boldsymbol{R}}_{2} \tag{9}
\end{equation*}
$$

The first three terms represent the translation, shearing motion and rotation of the fluid.

References

[1] Guo Shuohong. Electrodynamics [M]. Beijing: Higher Education Press, 2008.
[2] Zheng XM, the Tensor Series Expansion and Special Functions [J]. China Science \& Technology Panorama Magazine, 2017 (5).
[3] Zheng XM. Tensor Representation and Properties of Multivariable Polynomial [OL]. http://www.docin.com/p-2152363013.html.
[4] Annoymous. Tensor Analysis [OL]. http://www.docin.com/p-2152362502.html.
[5] Zhang Zhusheng. New Argument on Mathematical Analysis• Volume 2 [M]. Beijing: Peking University Press, 1990.

