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Abstract: Taylor formula is extensively useful in several fields, such as mathematics, science and 
technology etc. Because of the wide range of application of Taylor formula, its significance is gen-
erally identified. However, Taylor formula is still restricted in vector. In this paper, the domain of 
Taylor formula is generalized and then range is also generalized. Finally, some specific examples in 
physics are given. 

1. Expansion of the Taylor formula 

In general, the Taylor formula for a single-variable function ( )f x  that is defined in the 
neighborhood of point 0x  and n times differentiable at 0x  is expressed as 
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( ) ( )0
kf x  is the function value of the k-th derivative of ( )f x  at 0.x  1+nR  is the remainder of 

the Taylor formula (The domain and value range of the function discussed in this article only 
consider real numbers.). 

In the multivariate function  
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0∆ = −i i ix x x . ( )01 02 0, … mf x x x  is the value of n times partial differentiable function 

( )1 2, … mf x x x  at 01 02 0, … mx x x . 

As we all know, the general form of a multivariate polynomial is 1 2
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1x , 2 x … mx  are m indeterminates, 1 2 , … mj j j  is the degree of each indeterminate, 1 2+ +… mj j j  
is the degree of the monomial, and 

1 2… mj j ja  is the coefficient of monomial when the degree of 1x  
is ij , the degree of 2x  is 2j …and the degree of mx  is mj . Its tensor representation is 
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i.e. a constant, 1
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A  is an m-dimensional vector, 2 
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A  is an 2nd order symmetric matrix, and 


nA  is 
an n-th order square tensor (i.e. the positive integer set of each index is the same); 

( )1 2, , ,= …
 T

mx x xx  is the vector of the respective variables, ⊗ denotes the tensor product, 
⊗ = ⊗ ⊗
  nx x x (n times multiplication…)⊗ x , and ( )· n  means n times dot product.[3] 

Combining the ideas of the tensor representation of the above polynomial, we point out: 
Theorem 1: The tensor representation of the multivariate Taylor formula is:  
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and is equivalent to (2). 
Proof: When n＝0, it is clearly established. When n＝1,  
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In the traditional Taylor formula representation 
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Then for the general case n, you only need to consider the n-th item. The n-th item of the tensor 
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, which is equal to the n-th term in traditional notation. The remainder 1+nR  has nothing to do with 
the discussion above, so it is proved. 

Note: The indices representation of (3) is  

( )
1 01, , 0 1 2

1 2

1
0

1 |
! …= = +

=

∂ ∂ ∂
= … ∆ ∆ …∆ +

∂ ∂ ∂∑ m m k

k

n

i x x x x i i i n
k i i i

f x f x x x R
k x x x

      (3’) 

In fact, from another perspective, the essence of the Taylor formula is to use the polynomial to 
simulate the properties of a function around a particular point, and because of the equivalence of the 
multivariate polynomial and the tensor, it is obvious that the tensor representation is reasonable. 

2. Domain’s generalization and high-order derivatives 
For the definition of higher-order derivatives and differentiations of analogous single-variable 

functions, we can define the k-th derivative of the multivariate function ( )f x  at the constant 

vector 0
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x  as ( )
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f fx x  ,which is the gradient we are familiar with. It is easy to get the differentiation 
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The above result can be generalized to a vector value function by a very simple step, that is, the 
function value is a vector, : →m pf   , ( )=
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x x x . This can also be written in the form of a column 

vector： 
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Its indices representation is： 
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In order to get a more compact structure, let's observe its regulation. When n ＝ 0,  
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 can be defined as the first derivative of a vector-valued function, which is 

the Jacobian matrix. We can write it down as ( )= ∇⊗
 

ffD x . Obviously, the k-th derivative of 
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3. Further generalization 
After the above discussion, we can try to further generalize the domain of the function to the 

tensor set, i.e. : →
nmf R R , ( )( )=

 ny  x . Here has been simplified, Set the argument ( ) nx  as a 

square tensor (the dimension of each index is equal, that is to say, the n indices of the component 
can only be taken from 1 to m). If it is a general tensor, it is more troublesome to discuss. Interested 
readers can try it for themselves. 
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Therefore, a function ( )( ) n x  that is s times differentiable for any 
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If you want to write a component representation and find that the indices are not enough. We can 
replace it with a combination of Roman numerals, uppercase letters and positive integers: 
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This is the Taylor formula of an arbitrary function of tensor. 
Using the previously method of generalizing range, it is possible to generalize the function value 

to a tensor to obtain the most general case. : →
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4. Applications 
Example 1: In a classical charged particles system, the electric potential φ of the system can be 

expressed as integral  
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In 3 , x  is the field point coordinates, 'x  is the source point coordinates, where k is the elec-
trostatic constant, and ( )'ρ x  is a function of charge density with respect to the position of the 
source. 
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We call the n-th term of the electric potential of the electric 12 −n  moment. For example, the 
second term is the electric dipole moment potential and the third term is the electric quadrupole 
moment potential. With the same reason, the magnetic vector potential 



A  can also be expanded 
into the sum of the magnetic multipole moments. 

Example 2: In fluid mechanics, the velocity v  about a specific point r  in 3 , ( )


 v r  is called 
the velocity field in space, which is generally considered to be continuous. We can use the Taylor 
formula to analyze the properties of velocity in a neighborhood of any given point in the field. 
Using (4), get ( ) ( ) 2·+ = +∇⊗ +
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( ) v r  represents the translation of the fluid. As for the second item, obviously it is a 3×3 matrix, we 
may wish to write it as a symmetric matrix and an antisymmetric matrix 
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The first three terms represent the translation, shearing motion and rotation of the fluid. 
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